Stable Water Use Efficiency of Tibetan Alpine Meadows in Past Half Century: Evidence from Wool δ13C Values

نویسندگان

  • Hao Yang
  • Nianpeng He
  • Yongtao He
  • Shenggong Li
  • Peili Shi
  • Xianzhou Zhang
  • Alexandra Weigelt
چکیده

Understanding the influences of climatic changes on water use efficiency (WUE) of Tibetan alpine meadows is important for predicting their long-term net primary productivity (NPP) because they are considered very sensitive to climate change. Here, we collected wool materials produced from 1962 to 2010 and investigated the long-term WUE of an alpine meadow in Tibet on basis of the carbon isotope values of vegetation (δ13Cveg). The values of δ13Cveg decreased by 1.34‰ during 1962-2010, similar to changes in δ13C values of atmospheric CO2. Carbon isotope discrimination was highly variable and no trend was apparent in the past half century. Intrinsic water use efficiency (Wi) increased by 18 μmol·mol-1 (approximately 23.5%) during 1962-2010 because the increase in the intercellular CO2 concentration (46 μmol·mol-1) was less than that in the atmospheric CO2 concentration (Ca, 73 μmol·mol-1). In addition, Wi increased significantly with increasing growing season temperature and Ca. However, effective water use efficiency (We) remained relatively stable, because of increasing vapor pressure deficit. Ca, precipitation, and growing season temperature collectively explained 45% of the variation of We. Our findings indicate that the We of alpine meadows in the Tibetan Plateau remained relatively stable by physiological adjustment to elevated Ca and growing season temperature. These findings improve our understanding and the capacity to predict NPP of these ecosystems under global change scenarios.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Seasonal Dynamics of Water Use Strategy of Two Salix Shrubs in Alpine Sandy Land, Tibetan Plateau

Water is a limiting factor for plant growth and vegetation dynamics in alpine sandy land of the Tibetan Plateau, especially with the increasing frequency of extreme precipitation events and drought caused by climate change. Therefore, a relatively stable water source from either deeper soil profiles or ground water is necessary for plant growth. Understanding the water use strategy of dominant ...

متن کامل

Eco-environmental degradation in the northeastern margin of the Qinghai–Tibetan Plateau and comprehensive ecological protection planning

The regional hydrology and ecosystems of the northeastern margin of the Qinghai–Tibetan Plateau have changed over the past 40 years driven by intense human activity and regional climate changes. Annual mean air temperature has increased in the region. Streamflow from the northeastern margin of the Qinghai–Tibetan Plateau has decreased significantly. Overall, a number of Alpine step meadows and ...

متن کامل

Community assembly and functional leaf traits mediate precipitation use efficiency of alpine grasslands along environmental gradients on the Tibetan Plateau

The alpine grasslands on the Tibetan Plateau are sensitive and vulnerable to climate change. However, it is still unknown how precipitation use efficiency (PUE), the ratio of aboveground net primary productivity (ANPP) to precipitation, is related to community assembly of plant species, functional groups or traits for the Tibetan alpine grasslands along actual environmental gradients. We conduc...

متن کامل

Methodological comparison of alpine meadow evapotranspiration on the Tibetan Plateau, China

Estimation of evapotranspiration (ET) for alpine meadow areas in the Tibetan Plateau (TP) is essential for water resource management. However, observation data has been limited due to the extreme climates and complex terrain of this region. To address these issues, four representative methods, Penman-Monteith (PM), Priestley-Taylor (PT), Hargreaves-Samani (HS), and Mahringer (MG) methods, were ...

متن کامل

Provenancing Archaeological Wool Textiles from Medieval Northern Europe by Light Stable Isotope Analysis (δ13C, δ15N, δ2H)

We investigate the origin of archaeological wool textiles preserved by anoxic waterlogging from seven medieval archaeological deposits in north-western Europe (c. 700-1600 AD), using geospatial patterning in carbon (δ13C), nitrogen (δ15N) and non-exchangeable hydrogen (δ2H) composition of modern and ancient sheep proteins. δ13C, δ15N and δ2H values from archaeological wool keratin (n = 83) and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015